Resolução de Despacho Multicombustível via Estratégia Evolutiva

Paulo Henrique Cunha

paulo.cunha@discente.ufma.br Prof. Dr. Osvaldo R. Saavedra

Departamento de Engenharia de Eletricidade Grupo de Sistemas de Potência Universidade Federal do Maranhão

26 de junho de 2020

Sumário

Introdução

Formulação do Despacho

Despacho Clássico

Despacho Multicombustível

Efeito dos Pontos de Válvula

Restrições de Operação

Resolução via Estratégia Evolutiva

Fluxograma do Método

Resultados Parciais

Sistema com 10 geradores

Sistema com 80 geradores

Conclusões Parciais

Paulo Henrique Cunha

Computação Evolutiva: Algoritmos que se baseiam na Teoria da Evolução de Darwin.

- Algoritmos genéticos;
- Programação evolutiva;
- Estratégias evolutivas.

Figura 1: Processo de evolução

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Introdução

Figura 2: Representação de um sistema de geração termelétrica

Paulo Henrique Cunha

Formulação

Despacho Clássico

$$F_i(P_i) = a_i + b_i P_i + c_i P_i^2$$

Figura 3: Curva de custo de geração

Despacho Multicombustível

$$\mathsf{F}_{i}(P_{i}) = \begin{cases} a_{i1} + b_{i1}P_{i} + c_{i1}P_{i}^{2}, \text{ combustivel 1, se } P_{i}^{min} \leq P_{i} \leq P_{i1} \\ a_{i2} + b_{i2}P_{i} + c_{i2}P_{i}^{2}, \text{ combustivel 2, se } P_{i1} < P_{i} \leq P_{i2} \\ \vdots & \vdots \\ a_{ik} + b_{ik}P_{i} + c_{ik}P_{i}^{2}, \text{ combustivel } k, \text{ se } P_{ik-1} < P_{i} \leq P_{i}^{max} \end{cases}$$

onde:

 a_{ik}, b_{ik} e c_{ik} são os coeficientes de custo do i-ésimo gerador utilizando o k-ésimo combustível.

イロト イポト イヨト イヨト

Despacho Multicombustível

Figura 4: Curvas de custo com múltiplos combustíveis

Paulo Henrique Cunha

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Despacho Clássico

$$F_i(P_i) = a_i + b_i P_i + c_i P_i^2 + |d_i sen(e_i(P_i^{min} - P_i))|$$

Figura 5: Função de custo com pontos de válvula

Despacho Multicombustível

$$\begin{aligned} \mathsf{F}_{i}(P_{i}) &= \\ \begin{cases} a_{i1} + b_{i1}P_{i} + c_{i1}P_{i}^{2} + |d_{i1}sen(e_{i1}(P_{i1}^{min} - P_{i1}))|, \ \text{combustivel } 1, \ \text{se } P_{i}^{min} \leq P_{i} \leq P_{i1} \\ a_{i2} + b_{i2}P_{i} + c_{i2}P_{i}^{2} + |d_{i2}sen(e_{i2}(P_{i2}^{min} - P_{i2}))|, \ \text{combustivel } 2, \ \text{se } P_{i1} < P_{i} \leq P_{i2} \\ \vdots & \vdots & \vdots \\ a_{ik} + b_{ik}P_{i} + c_{ik}P_{i}^{2} + |d_{ik}sen(e_{ik}(P_{ik}^{min} - P_{ik}))|, \ \text{combustivel } k, \ \text{se } P_{ik-1} < P_{i} \leq P_{i}^{max} \end{aligned} \end{aligned}$$

- a_{ik}, b_{ik} e c_{ik} são os coeficientes de custo do i-ésimo gerador utilizando o k-ésimo combustível;
- d_{ik} e e_{ik} são os coeficientes de custo com o efeito dos pontos de válvula.

Paulo Henrique Cunha

Figura 6: Curvas de custo com múltiplos combustíveis e efeito dos pontos de válvula

Paulo Henrique Cunha

26 de junho de 2020 10 / 34

• • • • • • • • • • •

Limites Operacionais

$$P_i^{min} \leq P_i \leq P_i^{max}$$

Balanço de Potência

$$\sum_{i=1}^{n} P_i = P_d + P_{loss}$$

onde:

- n número de geradores;
- ► *P*_d potência de demanda;
- ▶ P_{loss} perdas na transmissão.

Perdas na Transmissão

$$P_{loss} = \mathbf{P}^{\mathsf{T}}[B]\mathbf{P} + B_0^{\mathsf{T}}\mathbf{P} + B_{00}$$

onde:

- ▶ P vetor de todas as barras geradoras (MW);
- B matriz quadrada dos coeficientes das perdas e de mesma dimensão que P;
- \blacktriangleright *B*₀ vetor de mesmo tamanho que P;
- ► B₀₀ constante.

A equação das perdas também pode ser expressa como:

$$P_{loss} = \sum_{i=1}^{n} \sum_{j=1}^{n} P_{i} B_{ij} P_{j} + \sum_{i=1}^{n} B_{0i} P_{i} + B_{00}$$

Paulo Henrique Cunha

< □ ト イ 団 ト イ Ξ ト イ Ξ ト Ξ の Q () 26 de junho de 2020 12 / 34

Limites de Rampa

Se a geração aumenta:

$$P_i - P_i(t-1) \leq UR_i$$

Se a geração diminui:

$$P_i(t-1) - P_i \leq DR_i$$

Figura 7: Rampas de Geração

26 de junho de 2020 13 / 34

A B >
 A
 B >
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Restrições de Operação

Zonas Proibidas de Operação

- Faltas nas máquinas;
- Oscilações das válvulas a vapor;
- Serviços auxiliares como caldeiras.

Figura 8: Zonas Proibidas de Operação

A D > <
 A P >

T locat	Generation Min P ₁ P ₂ Max F1 F2 F3	Fuel	Cost coefficients				
Ont		type	ai	bi	Ci	e,	fr
1	100 196 250	1	.2697e2	3975e0	.2176e-2	.2697e-1	3975e1
1	1 2	2	.2113e2	3059e0	.1861e-2	.2113e-1	3059e1
	$\begin{smallmatrix}50&114&157&230\\2&3&1\end{smallmatrix}$	1	.1184e3	1269e1	.4194e-2	.1184e0	1269e2
2		2	.1865e1	3988e-1	.1138e-2	.1865e-2	3988e0
		3	.1365e2	1980e0	.1620e-2	.1365e-1	1980e1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	.3979e2	3116e0	.1457e-2	.3979e-1	3116e1
3		2	5914e2	.4864e0	.1176e-4	5914e-1	.4864e1
		3	2875e1	.3389e-1	.8035e-3	2876e-2	.3389e0
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	.1983e1	3114e-1	.1049e-2	.1983e-2	3114e0
4		2	.5285e2	6348e0	.2758e-2	.5285e-1	6348e1
		3	.2668e3	2338e1	.5935e-2	.2668e0	2338e2
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	.1392e2	8733e-1	.1066e-2	.1392e-1	8733e0
5		2	.9976e2	5206e0	.1597e-2	.9976e-1	5206e1
		3	5399c2	.4462e0	.1498e-3	5399e-1	.4462e1
6	85 138 200 265 2 1 3	1	.5285e2	6348e0	.2758e-2	.5285e-1	6348e1
		2	.1983e1	3114e-1	.1049e-2	.1983e-2	3114e0
		3	.2668e3	2338e1	.5935e-2	.2668e0	2338e2

Fluxograma do Algoritmo

Paulo Henrique Cunha

26 de junho de 2020 16 / 34

População Inicial

$$\mathbf{v}_i = ([P_{i1}, P_{i2}, \ldots, P_{in}], [\sigma_{i1}, \sigma_{i2}, \ldots, \sigma_{in}])$$

$$P = \begin{pmatrix} P_{11} & \dots & P_{1j} & \dots & P_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ P_{i1} & \dots & P_{ij} & \dots & P_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ P_{\mu 1} & \dots & P_{\mu j} & \dots & P_{\mu n} \end{pmatrix}$$

$$\sigma = \begin{pmatrix} \sigma_{11} & \dots & \sigma_{1j} & \dots & \sigma_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \sigma_{i1} & \dots & \sigma_{ij} & \dots & \sigma_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \sigma_{\mu 1} & \dots & \sigma_{\mu j} & \dots & \sigma_{\mu n} \end{pmatrix}$$

Paulo Henrique Cunha

Primeiro operador para criação de novos indivíduos.

Figura 10: Operador de Recombinação

- 1. Recombinação Aleatória;
- 2. Recombinação Intermediária Global;

Recombinação Aleatória

Figura 11: Recombinação Aleatória

Paulo	Henrique	e Cunha
-------	----------	---------

Recombinação ou Cruzamento

¹A matriz P_{cruz} representa a nova população de indivíduos após o operador de recombinação.

Paulo Henrique Cunha

26 de junho de 2020 20 / 34

Este operador aplica a mutação gaussiana nos λ descendentes obtidos através da recombinação.

$$\sigma'_{ij} = \sigma_{ij} \cdot exp(au' N(0,1) + au N(0,1))$$

$$P'_{ij} = P_{ij} + \sigma'_{ij} \cdot N(0,1)$$

sendo os fatores $\tau = \left(\sqrt{2\sqrt{n}}\right)^{-1}$ e $\tau' = \left(\sqrt{2n}\right)^{-1}$ definidos como *taxa* de aprendizagem.

Mutação

²A matriz P_{mut} representa a nova população de indivíduos após o operador de mutação.

Paulo Henrique Cunha

26 de junho de 2020 22 / 34

N

Refinamento da mutação com o decorrer das gerações.

$$\sigma(t)_{max} = \sigma_{max}^{0} \cdot exp(-t/T)$$

$$\sigma(t)_{min} = \sigma_{min}^{0} \cdot exp(-t/T)$$

$$\sigma(t)_{min} = \sigma_{min}^{0} \cdot exp(-t/T)$$

1.0

$$\sigma(t) = \sigma(t)_{min} + \delta \cdot (\sigma(t)_{max} - \sigma(t)_{min})$$

Figura 12: Limites dinâmicos

Avaliação

Avalia cada indivíduo de acordo com a função objetivo (*fitness*). Para o caso do despacho clássico:

$$fit_{i} = \sum_{i=1}^{n} F_{i}(P_{i}) + K_{d} \cdot \left(\sum_{i=1}^{n} P_{i} - P_{d} - P_{loss}\right)^{2}$$
$$\begin{pmatrix} P_{11} & \dots & P_{1j} & \dots & P_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ P_{i1} & \dots & P_{ij} & \dots & P_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ P_{\mu 1} & \dots & P_{\mu j} & \dots & P_{\mu n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ P_{\lambda 1} & \dots & P_{\lambda j} & \dots & P_{\lambda n} \end{pmatrix} = \begin{pmatrix} fit_{1} \\ \vdots \\ fit_{i} \\ \vdots \\ fit_{\mu} \\ \vdots \\ fit_{\lambda} \end{pmatrix}$$

Paulo Henrique Cunha

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Seleção

Etapa em que são selecionados os μ melhores indivíduos para a próxima geração.

$$P_{sel} = \begin{pmatrix} P_{11} & \dots & P_{1j} & \dots & P_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ P_{i1} & \dots & P_{ij} & \dots & P_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ P_{\mu 1} & \dots & P_{\mu j} & \dots & P_{\mu n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ P_{\lambda 1} & \dots & P_{\lambda j} & \dots & P_{\lambda n} \end{pmatrix}$$

Paulo Henrique Cunha

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

► EE-(μ, λ)

Paulo Henrique Cunha

◆ロト 4 団ト 4 団ト 4 団ト Ξ 少 Q (~) 26 de junho de 2020 26 / 34

► EE-($\mu + \lambda$)

Paulo Henrique Cunha

◆ロト 4 団ト 4 団ト 4 団ト Ξ 少 Q (*) 26 de junho de 2020 27 / 34

Parâmetros de Simulação

- $\mu = 50$ pais;
- $\lambda = 100$ filhos;
- ▶ gerações = 500;
- $\sigma_{min}^{0} = 0,005;$
- $\sigma_{max}^0 = 3;$
- ► 10 execuções.

Tabela 1: Resultados para o sistema com 10 geradores

Método	2400 (MW)	2500 (MW)	2600 (MW)	2700 (MW)	Iterações
ALO	485,0665	528,0273	579,7788	625,8732	750
IALO	481,7230	526,2391	574,3814	623,8092	750
EE	481,7226	526,2388	574,3808	623,8092	500

Figura 13: Convergência da solução

Tabela 2: Potências de saída

Gerador	2400 (MW)	2500 (MW)	2600 (MW)	2700 (MW)
<i>G</i> ₁	189,7416	206,5196	216,5459	218,2492
G_2	202,3428	206,4575	210,9065	211,662
G ₃	253,8955	265,738	278,5435	280,723
G_4	233,0457	235,9527	239,0963	239,6313
G_5	241,8298	258,0185	275,5186	278,4999
G_6	233,0446	235,9528	239,0957	239,6313
G7	253,2755	268,864	285,7169	288,5835
G_8	233,0451	235,9524	239,0963	239,6317
G_9	320,3823	331,4889	343,4933	428,5196
G ₁₀	239,3971	255,0555	271,9869	274,8684
Pot. Saída	2400,000	2500,000	2600,000	2700,000

Tabela 3: Resultados para o sistema com 10 geradores com pontos de válvulas

Método	Melhor Custo	Custo Médio	Pior Custo	Desvio	Iterações
ALO	623,9214	626,0822	243,8231	3,8731	8000
IALO	623,8347	623,9930	626,4434	0,4232	8000
EE	623,9111	623,9707	624,1411	0,0769	500

Figura 14: Convergência da solução

Tabela 4: Resultados para o sistema com 80 geradores com pontos de válvulas

Método	Melhor Custo	Custo Médio	Pior Custo	Desvio	Iterações
ALO	5001,8871	5028,8184	5053,1242	11,9668	80000
IALO	4992,1712	5004,8651	5018,6019	8,3978	80000
EE	4995,3874	4997,3184	4998,7059	1,1213	500

Figura 15: Convergência da solução

- Simples implementação;
- ► Robustez;
- Rápida convergência;
- Soluções satisfatórias;
- ► Confiabilidade;
- Ainda não engloba a restrição de zonas proibidas;
- Quando comparado a outros métodos da literatura, obteve os melhores resultados.

Obrigado!

Paulo Henrique Cunha

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < 0 < ○
 26 de junho de 2020 34 / 34