

UNIVERSIDADE FEDERAL DO MARANHÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE

CONTRIBUIÇÕES PARA O FLUXO DE CARGA EM MICRORREDES EM OPERAÇÃO ISOLADA

Iasmim Andrade Almeida

Prof. Dr. Osvaldo R. Saavedra Prof. Dr. Denisson Q. Oliveira

Sumário

- 1. Introdução
- 2. Fluxo de Carga
- 3. Fluxo de Carga em Microrredes Isoladas Particularidades
- 4. Resolução via Método de Newton-Raphson
- 5. Resolução via Método de Newton-Raphson Modificado
- 6. Estudos de caso
- 7. Discussões, resultados parciais e conclusões

Fluxo de Carga

- Visa conhecer o estado estático de uma Rede Elétrica
 - Tensões, Ângulos, Potencias nos Barramentos
 - Fluxos nos Ramos e Perdas de Potencia
- Modelagem do Problema:
 - Sistema de Equações e Inequações Algébricas
 - Resolução através de Métodos Iterativos
 - Barras classificadas em Vθ, PV, PQ
 - Método de Newton-Raphson

Fluxo de Carga

Tabela I – Tipos de Barramentos em uma Rede

Tipo de Barra	Variáveis Conhecidas	Variáveis Desconhecidas
PQ	P e Q	Veθ
PV	P e V	Qeθ
Vθ	Veθ	P e Q

$$P_{k} = |V_{k}| \sum_{\substack{n=1\\N}}^{N} Y_{kn} |V_{n}| \cos(\theta_{k} - \theta_{n} - \varphi_{kn})$$
$$Q_{k} = |V_{k}| \sum_{\substack{n=1\\n=1}}^{N} Y_{kn} |V_{n}| \sin(\theta_{k} - \theta_{n} - \varphi_{kn})$$
$$\Delta P = P_{k}^{esp} - P_{k} = 0$$
$$\Delta Q = Q_{k}^{esp} - Q_{k} = 0$$

Fig.1 – Sistema de 3 Barras

Iasmim Almeida

Fluxo de Carga em Microrredes Isoladas - Particularidades

- Problema:
 - Ausência de Barramento de Referencia
 - Presença de Gerações com Controle Droop
 - Variações na Frequência da Rede
 - Limitação da classificação Vθ, PV, PQ

Tipo de Barra	Variáveis Conhecidas	Variáveis Desconhecidas		
PQ	P e Q	Veθ		
PV	P e V	Qeθ		
VF	-	V, θ, Ρ e Q		
Vθ	Não se aplica			

Fig. 2- Microrrede de 38 Barras (Fonte: Ref. [1])

Resolução via Método de Newton-Raphson Modificado

- Classificação dos barramentos VF, PV, PQ
- Inclui presença de Controle Droop
- Inclui as Variações na Frequência da Rede

Tabela II – Tipos de Barramentos numa Microrrede Isolada ((Fonte: Ref. [2])
--	--------------------

Tipo de Barra	Variáveis Conhecidas	Variáveis Desconhecidas
PQ	P e Q	Veθ
PV	P e V	Qeθ
VF	-	V, θ, Ρ e Q

Fig. 2– Microrrede de 38 Barras (Fonte: Ref. [1])

Fig. 1. Fluxograma de solução do problema (Fonte: Ref. [2]) INICIO **INIC. VETORES:** $\theta = 0; |V| = 1;$ **CALCULAR O VETOR** $\boldsymbol{P}_{\boldsymbol{G}_{K}^{i+1}} = \frac{\omega_{0} - \omega^{i}}{m_{p_{k}}} \qquad \boldsymbol{Q}_{\boldsymbol{G}_{K}^{i+1}} = \frac{|V_{0}| - |V_{k}^{i}|}{n_{q_{k}}}$ $\omega = 1; |V_1| = 1$ **DE ERROS** ΔY CALCULAR $Y_{BUS}(\omega)$ CALCULAR A MATRIZ **JACOBIANA: J CALCULAR GERAÇÃO** $Q_{sys} = \sum Q_{G_K}$ $P_{svs} = \sum P_{G_K}$ $x^{i+1} = x^i + \mathbf{J}^{-1} \Delta y$ **NAS BARRAS DROOP:** $P_{G_K} e Q_{G_K}$ $\Delta x = |x^{i+1} - x^i|$ CALCULAR INJEÇÕES NAS BARRAS: **CALCULAR DEMANDA:** $P_{C_K} e Q_{C_K}$ $P_{TOTAL} = \sum P_{LK} + \sum P_{LOSS}$ $\Delta x < tolerancia ?$ **CALCULAR PERDAS**: SIM NÃO $Q_{TOTAL} = \sum Q_{LK} + \sum Q_{LOSS}$ **CALCULAR CARGAS**: $\sum P_{LOSS} e \sum Q_{LOSS}$ $P_{L_K} e Q_{L_K}$ **FIM**

Fig. 1. Fluxograma de solução do problema (Fonte: Ref. [2])

CALCULAR DEMANDA:

 $P_{TOTAL} = \sum P_{LK} + \sum P_{LOSS}$

$$\boldsymbol{P}_{LK} = \boldsymbol{P}_{LK_0} \left(\frac{\left| V_k^i \right|}{\left| V_0 \right|} \right)^{\alpha} \left(1 + K_{p_f} (\omega^i \cdot \omega_0) \right)$$
$$\boldsymbol{Q}_{LK} = \boldsymbol{Q}_{LK_0} \left(\frac{\left| V_k^i \right|}{\left| V_0 \right|} \right)^{\beta} \left(1 + K_{q_f} (\omega^i \cdot \omega_0) \right)$$

Fig. 1. Fluxograma de solução do problema (Fonte: Ref. [2])

CALCULAR DEMANDA:

 $P_{TOTAL} = \sum P_{LK} + \sum P_{LOSS}$

$$\boldsymbol{P}_{LK} = \boldsymbol{P}_{LK_0} \left(\frac{\left| V_k^i \right|}{\left| V_0 \right|} \right)^{\alpha} \left(1 + K_{p_f} (\omega^i \cdot \omega_0) \right)$$
$$\boldsymbol{Q}_{LK} = \boldsymbol{Q}_{LK_0} \left(\frac{\left| V_k^i \right|}{\left| V_0 \right|} \right)^{\beta} \left(1 + K_{q_f} (\omega^i \cdot \omega_0) \right)$$

Fig. 1. Fluxograma de solução do problema (Fonte: Ref. [2])

$$P_{loss} = \frac{1}{2} \sum_{k=1}^{N} \sum_{n=1}^{N} Re(Y_{kn}(V_k^* \cdot V_n + V_n^* \cdot V_k))$$

$$Q_{loss} = -\frac{1}{2} \sum_{k=1}^{N} \sum_{n=1}^{N} Im(Y_{kn}(V_k^* \cdot V_n + V_n^* \cdot V_k))$$

CALCULAR DEMANDA:

$$P_{TOTAL} = \sum P_{L_K} + \sum P_{LOSS}$$

PERDAS:
 $Q_{TOTAL} = \sum Q_{L_K} + \sum Q_{LOSS}$

Fig. 3- Sistema-teste de 6 Barras (Fonte: Ref. [2])

Fig. 4- Sistema-teste de 38 Barras (Fonte: Ref. [2])

Tabela IV – Tipos de Barras

MNR

VF

PQ

VF

VF

VF

VF

Barra

1

2

3

4

5

6

Tipo

NR

PQ

PQ

PQ

PV

ΡV

Vθ

Estudos de caso

Tabela III – Perdas Ativas conforme Barra Vθ

Método	Perdas Ativas Totais (p.u)	
MNR	0.281604	
NR –Barra 4	0.291814	
NR –Barra 5	0.290936	
NR –Barra 6	0.274874	

$$P_{Lk}(\alpha, V_k, \omega = \omega_o) = P_{Lk_o} \left(\frac{|V_k|}{|V_{k_o}|}\right)^{\alpha}$$

$$P_{Lk}(\alpha, V_k, \omega = \omega_o) = P_{Lk_o} \left(\frac{|V_k|}{|V_{k_o}|}\right)^{\alpha}$$
$$Q_{Lk}(\beta, V_k, \omega = \omega_o) = Q_{Lk_o} \left(\frac{|V_k|}{|V_{k_o}|}\right)^{\beta}$$

 $lpha=0 \ \mathrm{e} \ eta=0$ $K_{pf}=1 \ ;K_{qf}=-1.$ $m_{P_k}=2,5\cdot 10^{-4}$ $n_{q_k}=7.2\cdot 10^{-3}.$

Fig. 3– Sistema-teste de 6 Barras (Fonte: Ref. [2])

$$P_{G_k} = \left(\sum_{k=1}^{N} P_{L_{k_0}}\right) / NG$$

Tipo

NR

PQ

PQ

PQ

PV

PV

Vθ

MNR

VF

PQ

VF

VF

VF

VF

Estudos de caso

Tabela IV – Tipos de Barras Tabela III – Perdas Ativas conforme Barra Vθ

Método	Perdas Ativas Totais	Barra
	(p.u)	1
MNR	0.281604	2
NR –Barra 4	0.291814	3
ND Dormo E	0.200026	4
NK – Darra S	0.290936	5
NR –Barra 6	0.274874	6

$$P_{Lk}(\alpha, V_k, \omega = \omega_o) = P_{Lk_o} \left(\frac{|V_k|}{|V_{k_o}|}\right)^{\alpha}$$

$$P_{Lk}(\alpha, V_k, \omega = \omega_o) = P_{Lk_o} \left(\frac{|V_k|}{|V_{k_o}|}\right)^{\alpha}$$
$$Q_{Lk}(\beta, V_k, \omega = \omega_o) = Q_{Lk_o} \left(\frac{|V_k|}{|V_{k_o}|}\right)^{\beta}$$

$$E_{abs.} = |S_{MNR} - S_{NR}|$$
$$E_{rel.}(\%) = 100 \cdot \left| \frac{S_{MNR} - S_{NR}}{S_{MNR}} \right|$$

Fig. 3– Sistema-teste de 6 Barras (Fonte: Ref. [2])

$$P_{G_k} = \left(\sum_{k=1}^{N} P_{L_{k_0}}\right) / NG$$

Fig. 3– Sistema-teste de 6 Barras (Fonte: Ref. [2])

L_1 R_{14} L_{14} DG1 Ş R_{12} L_{12} 5 R_{25} L_{25} DG2 ∽~~ R_{23} L_{23} 6 3 R₃₆ L₃₆ DG3 L_3

Dourse	Тіро		
Barra	MNR	NR	
1	VF	PQ	
2	PQ	PQ	
3	VF	PQ	
4	VF	PV	
5	VF	PV	
6	VF	Vθ	

Estudos de caso

Tabela v – Estado calculado para o Sistema de o DalTas								
	Tensões Nodais			Ângulos Nodais (graus)				
Barras	MNR (p.u.)	NR (p.u.)	Erro absoluto (p.u.)	Erro relativo (%)	MNR (graus)	NR (graus)	Erro absoluto (graus)	Erro relativo (%)
1	0.956513	0.970744	1.10-2	1.4878	0	-0.138062	1.10-1	-
2	0.970280	0.984486	1.10-2	1.4642	-0.561295	-0.530922	3.10-2	5.4113
3	0.961006	0.993589	3.10-2	3.3905	-2.870452	-2.815042	6·10 ⁻²	1.9304
4	0.986045	1.000000	1.10-2	1.4152	-0.089377	-0.332170	2·10 ⁻¹	271.6521
5	0.989277	1.000000	1.10-2	1.0839	-0.479837	-0.105163	4·10 ⁻¹	78.0835
6	0.966951	1.000000	3.10-2	3.4179	-3.068925	-3.068925	0	0
	Frequência		Perdas Ativas					
Sistema	MNR (p.u.)	NR (p.u.)	Erro absoluto (p.u.)	Erro relativo (%)	MNR (p.u.)	NR (p.u.)	Erro absoluto (p.u.)	Erro relativo (%)
	0.999040	1.000000	1·10 ⁻³	0.0961	0.281604	0.274874	7·10 ⁻³	2.3896

Tabola V Estado calculado para o Sistema do 6 Barras

Fig. 4– Sistema-teste de 38 Barras (Fonte: Ref. [2])

Método	Perdas Ativas Totais (p.u)		
MNR	0.052064		
NR –Barra 34	0.059351		
NR –Barra 35	0.059379		
NR –Barra 36	0.059328		
NR –Barra 37	0.059368		
NR –Barra 38	0.059457		

 $\begin{array}{l} {\rm R} \; (\alpha {=} 0.92 \; {\rm e} \; \beta {=} 4.04) \\ {\rm C} \; (\alpha {=} 1.51 \; {\rm e} \; \beta {=} 3.40) \\ {\rm I} \; (\alpha {=} 0.18 \; {\rm e} \; \beta {=} 6.00) \\ K_{pf} = 1 \; ; K_{qf} = -1. \\ m_{P_k} = 3 \cdot 10^{-3} \; ; \; n_{q_k} = 3 \cdot 10^{-2} \end{array}$

Tabela VII – Tipos de Barras

Derma	Тіро		
Barra	MNR	NR	
1-33	VF	PQ	
34	VF	PV	
35	VF	PV	
36	VF	Vθ	
37	VF	PV	
38	VF	PV	

 $P_{G_k} = \left(\sum_{k=1}^{N} P_{L_{k_o}}\right) / NG$

$$E_{abs.} = |S_{MNR} - S_{NR}|$$
$$E_{rel.}(\%) = 100 \cdot \left| \frac{S_{MNR} - S_{NR}}{S_{MNR}} \right|$$

Fig. 4– Sistema-teste de 38 Barras (Fonte: Ref. [2])

Tabela VI – Perdas Ativas conforme Barra Ve						
Perdas Ativas Totais (p.u)						
0.052064						
0.059351						
0.059379						
0.059328						
0.059368						
0.059457						

$$P_{Lk}(\alpha, V_k, \omega = \omega_o) = P_{Lk_o} \left(\frac{|V_k|}{|V_{k_o}|}\right)^{\alpha}$$
$$Q_{Lk}(\beta, V_k, \omega = \omega_o) = Q_{Lk_o} \left(\frac{|V_k|}{|V_{k_o}|}\right)^{\beta}$$

Tabela VII – Tipos de Barras

Desure	Tipo			
Barra	MNR	NR		
1-33	VF	PQ		
34	VF	PV		
35	VF	PV		
36	VF	Vθ		
37	VF	PV		
38	VF	PV		

$$P_{G_k} = \left(\sum_{k=1}^{N} P_{L_{k_o}}\right) / NG$$

$$E_{abs.} = |S_{MNR} - S_{NR}|$$
$$E_{rel.}(\%) = 100 \cdot \left| \frac{S_{MNR} - S_{NR}}{S_{MNR}} \right|$$

Tabela VIII – Estado calculado para o Sistema de 38 Barras

	Tensões Nodais			Ângulos Nodais (graus)				
Barra	MNR (p.u)	NR (p.u)	Erro absoluto (p.u)	Erro relativo (%)	MNR (p.u)	NR (p.u)	Erro absoluto (p.u)	Erro relativo (%)
1	0.973634	0.987205	1.10-2	1.3939	0.000000	-0.368050	4·10 ⁻¹	-
2	0.973634	0.987205	1.10-2	1.3939	0.000003	-0.368050	$4 \cdot 10^{-1}$	$1.4704 \cdot 10^{7}$
6	0.972253	0.985133	1.10-2	1.3248	0.174709	-0.139580	3·10 ⁻¹	179.8930
18	0.966244	0.976353	1.10-2	1.0462	-0.019464	-0.104424	8·10 ⁻²	436.5044
33	0.960365	0.974375	1.10-2	1.4588	0.363661	-0.040024	$4 \cdot 10^{-1}$	111.0058
34	0.989774	1.000000	1.10-2	1.0331	0.525938	0.385084	1.10^{-1}	26.7815
35	0.984100	1.000000	2·10 ⁻²	1.6157	0.540418	0.032007	$5 \cdot 10^{-1}$	94.0773
36	0.991261	1.000000	9·10 ⁻³	0.8816	0.601918	0.601918	0	0.0000
37	0.990296	1.000000	1.10-2	0.9799	0.403985	0.265925	1.10^{-1}	34.1745
38	0.981243	1.000000	2.10-2	1.9115	-0.211711	-0.975843	8·10 ⁻¹	360.9313
Sistema	Frequência (p.u.)			Perdas Ativas (p.u.)				
	MNR (p.u)	NR (p.u)	Erro absoluto (p.u)	Erro relativo (%)	MNR (p.u)	NR (p.u)	Erro absoluto (p.u)	Erro relativo (%)
	0.997817	1.000000	2·10 ⁻³	0.2187	0.052064	0.059328	7·10 ⁻³	13.9515

Discussões, resultados parciais e conclusões

- O Método de Newton-Raphson Modificado apresenta modificações simples, mas extremamente validas;
- Sem restrições de aplicação em microrredes;
- Há disparidades entre as soluções apontadas pelos dois métodos em microrredes isoladas;
- Apesar parecerem pouco significantes, sabe-se que o estado sempre estará na faixa de 1 p.u e 0 graus; e
- O calculo Fluxo de Carga em Microrredes Isoladas, qual desconsidera as particularidades desta deve ter uso cauteloso.

Referências

- [1] M. M. A. Abdelaziz, H. E. Farag, E. F. El-Saadany and Y. A.-R. I. Mohamed, "A Novel and Generalized Three-Phase Power Flow Algorithm for Islanded Microgrids Using a Newton Trust Region Method," vol. 28, no. 1, pp. 190-201, Fevereiro 2013.
- [2] F. Mumtaz, M. H. Syed, M. A. Hosani and H. H. Zeineldin, "A Novel Approach to Solve Power Flow for Islanded Microgrids Using Modified Newton Raphson With Droop Control of DG," *IEEE Transactions on Sustainable Energy*, vol. 7, no. 2, pp. 493 - 503, 2016.
- [3] D. Singh, R. K. Misra e D. Singh, "Effect of load models in distributed generation planning," *IEEE Transactions on Power Systems*, vol. 22, n^o 4, pp. 2204-2212, 2007.
- [4] W. F. Tinney and C. E. Hart, "Power Flow Solution by Newton's Method," *IEEE Transactions on Power Apparatus and Systems,* Vols. PAS-86, no. 11, pp. 1449-1460, 1967.

OBRIGADA

Iasmim Almeida

almeidaiasmimtt@gmail.com