

Federal University of Maranhão – UFMA Institute of Electrical Energy – IEE Brazil

Ocean Energy in Brazil

TEE

Osvaldo Ronald Saavedra – Coordenador

o.saavedra@ieee.org

NATIONAL INSTITUTE OF SCIENCE AND TECNOLOGY IN OCEAN AND FLUVIAL ENERGIES

INEOF operates as a collaborative network of federal universities;

The financing comes from the federal and state government, obtained through public competition;

UFMA – Federal University of Maranhão UFRJ – Federal University of Rio de Janeiro UFSC – Federal University of Santa Catarina UNIFEI – Federal University of Itajubá UFPA – Federal University of Pará

International Collaborators

INESC P&D

Indian Institute of Technology Roorkee – India

- Ecole Polytechnique de Lausanne Switzerland
- Aalborg University Denmark
 - Hydro-environmental Research Centre, da Cardiff School of Engineering, Cardiff University, UK

What are the goals?

 Contribute to the research and development of oceanic energies in Brazil;
Human resources in marine energies;
Encourage the formation of an industry related to marine energies;

MAIN SUBJECTS

> Wave Energy > Tidal Currents

Wave Energy in Brazil

Wave potential around the world

Considering 7.7 Kw / m (estimated from Ceará coast):
Brazil has 7367 km of coastline.
Gross potential around 57 GW

PECÉM - CEARÁ

WAVE PROJECT

Tidal resorces

Tidal variations

Assessment of tidal potential (barrage)

- Contracted by Eletrobrás
- Executed from 1979 to 1980
- Assessed region: Maranhão-Pará-Amapá.

Channel of Varador and Island of Maracá

Estimated values (barrage)

LOCALIZATION	Average tidal Amplitude (m)	Reservoir field (km²)	Installed power (MW)	Annual Energy (GWh)
Island of Maracá - AMAPÁ	8,0	307	4912	13160
Bay of Araguari - AMAPÁ	5,4	157	1144	3066
Bay of Maracanã - PARÁ	3,7	155	530	1421
Bay of Japerica – PARÁ	4,0	115	415	1112
Bay of Turiaçu - MARANHÃO	4,7	616	3402	9114
Bay of Lençóis - MARANHÃO	4,7	316	1745	4675
Bay of São José - MARANHÃO	4,3	451	2084	5585

Global estimates (barrage)

27 GW 72 TWh/year

Boqueirão Project by INEOF

Tidal currents

20

 Tidal currents have not been formally evaluated in Brazil
There are preliminary assessments at specific locations

Bay of São Marcos Maranhão, Brazil

São Marcos Bay (MA – BRAZIL)

Zone	Width (m)	Length (m)	Depth (m)	$U_{\rm avg}\pm$ SD (m/s)	U ₅₀ (m/s)	U _{Max} (m/s)
A	1000	1350	25-40	1.10 ± 0.06	1.20	2.63
В	2600	1900	22	1.10 ± 0.13	1.23	2.42
С	1000	1100	30–35	1.10 ± 0.04	1.12	2.19

Table 1. Hydraulic/ hydrodynamic characteristics of zones with tidal energy potential

Zone	Peak power (k	W/m ²)	Avg. annual power
	Spring tide	Neap tide	year)
A	7.5	2.1	11.2
В	5.1	1.5	10.4
С	4.8	1.5	9.2

Table 2. Power density summary for selected zones

Fig 2. Hot spots for efficient tidal current power extraction in São Marcos Bay. Zoom region shows bathymetry contours

Fonte: GORBEÑA, E.G., ROSMAN, P.C.C., QASSIM, R.Y., 2015.

The authors indicate a potential in the range of 300 MW - 800 MW from tidal currents in one of eight promising areas of San Marcos Bay.

PRELIMINARY STUDY

Performed by: INEOF

- Years: 2017-Present
- Localization: Maranhão

INSTITUTO NACIONAL DE CIÊNCIA E TECNOLOGIA ENERGIAS OCEÂNICAS E FLUVIAIS

AVAILABLE ENERGY

Location of tidal current turbines

27

FEATURES

SPEED CURRENTS	3 m/s
INTERESTING FEATURE	Quasi-constant direction and value

Estimating a tidal farm

- Arrangement of 168 turbines;
- Estimated annual generation: 203.1 GWh;
- Capacity Factor: 27.6%;
- Power Capacity: 84 MW;
- Corresponds to 0.51% of the Energy used in Brazil in 2018;
- Spacing between turbines: approximately 60 meters.

CHALLENGES

CHALLENGES

- Assessment of energy potential;
- Development of adapted tidal turbine;
- Development of source integration technology;
- Lack of legislation;
- Environmental issues;
- Incentive policy.

FINAL COMMENTS

- Most of these works are being developed by INEOF researchers;
- Financial constraints allow only laboratory scale prototypes.
 - For real-scale prototype, specific funding is required: new partners!

UFMA - Brazil

THANK YOU!

o.saavedra@ieee.org Federal University of Maranhão

34