

Armazenamento de energia

Prof. Shigeaki Lima, Dr. EE

Introduction

Energy Storage in Modern Grids

Emerging Energy Storage Technologies

Both Thermal and Electrochemical storage have been growing rapidly over the past decade. Renewable integration, ancillary services, demand side management and electric vehicles will probably foster energy storage markets in both developed and emerging nations.

Mapping Storage Technologies

Advanced Lead Acid

Lead-Acid batteries consist of two electrodes: Lead and lead-dioxide immersed in sulfuric acid.

Performance measure	Cycle Life	Energy Efficiency (%)
Market leader	1200	80
Best in class	2000	85

Sodium based battery - NAS

Sodium-sulfur (NaS) batteries use molten sodium and sulfur electrodes separated by a ceramic electrolyte

Performance measure	Cycle Life	Energy Efficiency (%)
Market leader	4000	70
Best in class	6000	85

Tube

Li-ion

Li-ion battery uses graphite as the anode material and LiFePO_4 or LiCoO_2 or Lithium titanate or lithium nickel manganese cobaltate as the cathode.

Li-Ion Batteries

Performance measure	Cycle Life	Energy Efficiency (%)
Market leader	2000	90
Best in class	10,000+	95

Lithium Cell Structure and the steps of the

Flow Battery

Flow batteries use liquid electrolytes with fixed cells to store and regenerate power. Various flow battery chemistries exist such as vanadium redox, zinc-bromine, iron - chromium etc.

Typical System Configuration for Most Common Applications

Segments / Applications	Sub Segments	Power Rating	Duration	DOD	Type of cycles	No of cycles / Year
	Wind Smoothing	1 MW- 20 MW	15 min - 1 h	<60%	Shallow	<18,000
Renewable Energy Integration	Wind Firming	1 MW-20 MW	4-6 h	>80%	Deep	<500
	Solar	3 KW-2 MW	3-6 h	>80%	Deep	<350
Load chifting or onorgy arbitrage	Commercial	10 KW - 2 MW	2-4 h	>80%	Mix	<400
Load shifting of energy arbitrage	Industrial	500 KW - 5 MW	2-4 h	>80%	Mix	<400
Off grid explications	Rural Microgrid (households)	1KW - 5 kW	2-8 h	>80%	Mix	<400
	Rural Schools / Hospitals	1 KW - 10 kW	2-8 h	>80%	Mix	<400
	Telecom Towers	2 KW - 5 kW	2-4 h	>80%	Mix	<700
Replacement of DG	Commercial	10 KW - 2 MW	2-4 h	>80%	Mix	<400
	Industrial	500 KW - 5 MW	2-4 h	>80%	Mix	<400
Transmission or Distribution Deferral	Utilities	1-20 MW	4-6 h	>80%	Mix	<100
Frequency support	Utilities / IPP	1 MW- 20 MW	15 min – 1 h	<60%	Shallow	<18,000
Reactive Power Management	Utility / C&I	3 KW - 10 MW	15 min – 1 h	N.A.	N.A.	N.A.

Landscape

Key Trends

Cost/Cycle Evolution

Global Deployments

Global Deployments

Technology Types

Technology Type	Projects	Rated Power (MW)
Compressed Air Energy Storage	3	7
Pumped Hydro Storage	350	181190
Thermal Storage	220	3275
Electro-chemical	991	3297
Hydrogen Storage	13	20
Liquid Air Energy Storage	2	5

Calendar Life vs Cycle Life

Calendar Life

Calendar aging comprises all aging processes that lead to a degradation of a battery cell independent of charge/discharge cycling:

✓ <u>Temperature;</u>

✓ <u>Time;</u>

 \checkmark

II WORKSHOP DE ENERGIAS OCEÂNICAS E FLUVIAIS

Expected life for VL Li-ion cells according to temperature (EOL for capacity loss of 20%)

Calendar Life

Recoverable capacity when storing Li-ion for one year at various temperatures

Temperature	40% charge	100% charge
0°C	98% (after 1 vear)	94% (after 1 vear)
25°C	96% (after 1 year)	80% (after 1 year)
40°C	85% (after 1 year)	65% (after 1 year)
	75% (after 1 year)	CO((after 2 menths)
60°C	75% (atter 1 year)	60% (atter 3 months)

Cycle Life

Cycle life is expressed in terms of the number of charge and discharge cycles that can be achieved depending on what level the battery is discharged (Depth of Discharge - DoD)

BESS	# Cycles	Capacity (MW)
ZnBr	>2000	0.05-2
Pb-acid	100-1000	0.001-50
NiCd	1000-3000	0.001-40
Li-ion	1000-5000	0.001-40
NaS	2000-4500	0.5-50
ZEBRA	>2500	0.001-1

Cycle life at + 25°C/+ 77°F

Number of cycles 10 000 000 1 000 000 100 000 10 000 Li-ion 1 000 10 20 30 40 50 70 80 90 100 60 Λ Depth of discharge (%)

Energy applications 70% capacity at EOL

Cycle life depends on

✓ <u>DoD</u>

Cycle Life

✓ Charging level

✓ Temperature

Cycle Life

Cycle life depends on

- ✓ <u>DoD</u>
- ✓ Charging level
- ✓ Temperature

C-rate	Time
5C	12 min
2C	30 min
1C	1h
0.5C or C/2	2h
0.2C or C/5	5h
0.1C or C/10	10h

Cycle Life

Cycle life depends on

- ✓ DoD
- ✓ <u>Charging level</u>
 - Pb-acid: a periodic fully saturated charge is essential to prevent sulfation
- Temperature

Charge Discharge		Available		
Level (V/cell)	Cycles	SOC		
4.30	150–250	110–115%		
4.25	200–350	105–110%		
4.20	300–500	100%		
4.15	400–700	90–95%		
4.10	600–1000	85–90%		
4.05	850–1500	80–85%		
4.00	1200–2000	70–75%		
3.90	2400–4000	60–65%		

Li-ion hattery

Cycle Life

Cycle Life and Temperature

Final Remarks

Conclusions

- Energy storage technologies are rapidly gaining adoption for several grid applications;
- Pumped Hydro, Thermal Storage and Lead Acid batteries have been used for grid support and back up applications for 100+ years;
- In recent years, Li-Ion batteries are gaining rapid adoption for short duration applications, and reduction in prices and improvements in performance are also enabling its use for applications such as peak load management and renewable integration;
- Advanced Lead Acid and Flow batteries are also promising significant improvements in the next years which may enable their utilization in newer applications;
- Regulatory intervention & business model innovation is expected to foster the wide adoption of energy storage in the upcoming years.

Conclusions

- Each battery system has unique characteristics (restrictions!) in terms of:
 - ✓ Depth of discharge;
 - ✓ Charging level ;
 - ✓ Loading;
 - ✓ Exposure to adverse temperature.
- BESS Management Systems play a fundamental role in maximizing storage lifetime at the expense of added losses for the overall system;
- It is possible to simulate the behavior of the BESS in practical applications to determine the expected EoL.

<u>shigeaki.lima@ufma.br</u> +55 98 3272 9202
